Welcome to Mobilarian Forum - Official Symbianize forum.

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Mastering Machine Learning: From Basics To Breakthroughs

OP
O 0

oaxino

Alpha and Omega
Member
Access
Joined
Nov 24, 2022
Messages
39,922
Reaction score
1,015
Points
113
Age
36
Location
japanse
grants
₲343,990
2 years of service
Mastering Machine Learning: From Basics To Breakthroughs


79170e686593d935853e1511dafe30d9.jpeg


Published 9/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 918.11 MB | Duration: 3h 38m​

Machine Learning, Supervised Learning, Unsupervised Learning, Regression, Classification, Clustering, Markov Models


What you'll learn
Explore the fundamental mathematical concepts of machine learning algorithms
Apply linear machine learning models to perform regression and classification
Utilize mixture models to group similar data items
Develop machine learning models for time-series data prediction
Design ensemble learning models using various machine learning algorithms
Requirements
Foundations of Mathematics and Algorithms
Description
This Machine Learning course offers a comprehensive introduction to the core concepts, algorithms, and techniques that form the foundation of modern machine learning. Designed to focus on theory rather than hands-on coding, the course covers essential topics such as supervised and unsupervised learning, regression, classification, clustering, and dimensionality reduction. Learners will explore how these algorithms work and gain a deep understanding of their applications across various domains.The course emphasizes theoretical knowledge, providing a solid grounding in critical concepts such as model evaluation, bias-variance trade-offs, overfitting, underfitting, and regularization. Additionally, it covers essential mathematical foundations like linear algebra, probability, statistics, and optimization techniques, ensuring learners are equipped to grasp the inner workings of machine learning models.Ideal for students, professionals, and enthusiasts with a basic understanding of mathematics and programming, this course is tailored for those looking to develop a strong conceptual understanding of machine learning without engaging in hands-on implementation. It serves as an excellent foundation for future learning and practical applications, enabling learners to assess model performance, interpret results, and understand the theoretical basis of machine learning solutions.By the end of the course, participants will be well-prepared to dive deeper into machine learning or apply their knowledge in data-driven fields, without requiring programming or software usage.
Overview
Section 1: Introduction
Lecture 1 Introduction to Machine Learning
Lecture 2 Types of Machine Learning
Lecture 3 Polynomial Curve Fitting
Lecture 4 Probability
Lecture 5 Total Probability, Bayes Rule and Conditional Independence
Lecture 6 Random Variables and Probability Distribution
Lecture 7 Expectation, Variance, Covariance and Quantiles
Section 2: Linear Models for Regression
Lecture 8 Maximum Likelihood Estimation
Lecture 9 Least Squares Method
Lecture 10 Robust Regression
Lecture 11 Ridge Regression
Lecture 12 Bayesian Linear Regression
Lecture 13 Linear models for classification::Discriminant Functions
Lecture 14 Probabilistic Discriminative and Generative Models
Lecture 15 Logistic Regression
Lecture 16 Bayesian Logistic Regression
Lecture 17 Kernel Functions
Lecture 18 Kernel Trick
Lecture 19 Support Vector Machine
Section 3: Mixture Models and EM
Lecture 20 K-means clustering
Lecture 21 Mixtures of Gaussians
Lecture 22 EM for Gaussian Mixture Models
Lecture 23 PCA, Choosing the number of latent dimensions
Lecture 24 Hierarchial clustering
Students, data scientists and engineers seeking to solve data-driven problems through predictive modeling

Screenshots

0484290b5feeffd572672caa0d519aa4.jpeg

rapidgator.net:
You must reply in thread to view hidden text.

ddownload.com:
You must reply in thread to view hidden text.
 
K 0

KatzSec DevOps

Alpha and Omega
Philanthropist
Access
Joined
Jan 17, 2022
Messages
861,804
Reaction score
8,566
Points
83
grants
₲59,235
3 years of service
oaxino salamat sa pag contribute. Next time always upload your files sa
Please, Log in or Register to view URLs content!
para siguradong di ma dedeadlink. Let's keep on sharing to keep our community running for good. This community is built for you and everyone to share freely. Let's invite more contributors para mabalik natin sigla ng Mobilarian at tuloy ang puyatan. :)
 
Top Bottom