Welcome to Mobilarian Forum - Official Symbianize.

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Data Science & Machine Learning: Naive Bayes in Python

M 0

mitsumi

Alpha and Omega
Member
Access
Joined
Oct 3, 2022
Messages
6,726
Reaction score
950
Points
83
Age
36
Location
vn
grants
₲17,521
3 years of service
61e86e692044cb4fd7fd8e0983b62024.jpeg

Published 11/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 32 lectures (5h) | Size: 2.2 GB

Master a crucial artificial intelligence algorithm and skyrocket your Python programming skills

What you'll learn
Apply Naive Bayes to image classification (Computer Vision)
Apply Naive Bayes to text classification (NLP)
Apply Naive Bayes to Disease Prediction, Genomics, and Financial Analysis
Understand Naive Bayes concepts and algorithm
Implement multiple Naive Bayes models from scratch
Requirements
Decent Python programming skills
Experience with Numpy, Matplotlib, and Pandas (we'll be using these)
For advanced portions: know probability
Description
In this self-paced course, you will learn how to apply Naive Bayes to many real-world datasets in a wide variety of areas, such as
computer vision
natural language processing
financial analysis
healthcare
genomics
Why should you take this course? Naive Bayes is one of the fundamental algorithms in machine learning, data science, and artificial intelligence. No practitioner is complete without mastering it.
This course is designed to be appropriate for all levels of students, whether you are beginner, intermediate, or advanced. You'll learn both the intuition for how Naive Bayes works and how to apply it effectively while accounting for the unique characteristics of the Naive Bayes algorithm. You'll learn about when and why to use the different versions of Naive Bayes included in Scikit-Learn, including GaussianNB, BernoulliNB, and MultinomialNB.
In the advanced section of the course, you will learn about how Naive Bayes really works under the hood. You will also learn how to implement several variants of Naive Bayes from scratch, including Gaussian Naive Bayes, Bernoulli Naive Bayes, and Multinomial Naive Bayes. The advanced section will require knowledge of probability, so be prepared!
Thank you for reading and I hope to see you soon!
Suggested Prerequisites
Decent Python programming skill
Comfortable with data science libraries like Numpy and Matplotlib
For the advanced section, probability knowledge is required
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?
Check out the lecture "Machine Learning and AI Prerequisite Roadmap" (available in the FAQ of any of my courses, including my free course)
UNIQUE FEATURES
Every line of code explained in detail - email me any time if you disagree
Less than 24 hour response time on Q&A on average
Not afraid of university-level math - get important details about algorithms that other courses leave out
Who this course is for
Beginner Python developers curious about data science and machine learning
Students and professionals interested in machine learning fundamentals

Download link

rapidgator.net:
You must reply in thread to view hidden text.

uploadgig.com:
You must reply in thread to view hidden text.

nitroflare.com:
You must reply in thread to view hidden text.

1dl.net:
You must reply in thread to view hidden text.
 
K 0

KatzSec DevOps

Alpha and Omega
Philanthropist
Access
Joined
Jan 17, 2022
Messages
977,918
Reaction score
8,839
Points
83
grants
₲59,582
3 years of service
mitsumi salamat sa pag contribute. Next time always upload your files sa
Please, Log in or Register to view URLs content!
para siguradong di ma dedeadlink. Let's keep on sharing to keep our community running for good. This community is built for you and everyone to share freely. Let's invite more contributors para mabalik natin sigla ng Mobilarian at tuloy ang puyatan. :)
 
Top Bottom