Welcome to Mobilarian Forum - Official Symbianize forum.

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Machine Learning with Python - A Mathematical Perspective

TOP 110


Alpha and Omega
Jan 21, 2021
Reaction score
3 years of service

Free Download Machine Learning with Python - A Mathematical Perspective
Published 10/2023
Created by Dr Amol Prakash Bhagat
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 42 Lectures ( 21h 18m ) | Size: 7.2 GB

Classification, Clustering, Regression Analysis
What you'll learn
Concepts, techniques and building blocks of machine learning
Mathematics for modeling and evaluation
Various algorithms of classification and regression for supervised machine learning
Various algorithms of clustering for unsupervised machine learning
Concepts of Reinforcement Learning
No programming experience needed. You will learn everything you need to know
Machine Learning: The three different types of machine learning, Introduction to the basic terminology and notations, A roadmap for building machine learning systems, Using Python for machine learning Training Simple Machine Learning Algorithms for Classification, Artificial neurons - a brief glimpse into the early history of machine learning, Implementing a perception learning algorithm in Python, Adaptive linear neurons and the convergence of learning A Tour of Machine Learning Classifiers Using scikit-learn, Choosing a classification algorithm, First steps with scikit-learn - training a perceptron, Modeling class probabilities via logistic regression, Maximum margin classification with support vector machines, Solving nonlinear problems using a kernel SVM, Decision tree learning, K-nearest neighbors - a lazy learning algorithm. Data Preprocessing, Hyperparameter Tuning: Building Good Training Sets, Dealing with missing data, Handling categorical data, Partitioning a dataset into separate training and test sets, Bringing features onto the same scale, Selecting meaningful features, Assessing feature importance with random forests, Compressing Data via Dimensionality Reduction, Unsupervised dimensionality reduction via principal component analysis, Supervised data compression via linear discriminant analysis, Using kernel principal component analysis for nonlinear mappings, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, Streamlining workflows with pipelines, Using k-fold cross-validation to assess model performance. Regression Analysis: Predicting Continuous Target Variables, Introducing linear regression, Exploring the Housing dataset, Implementing an ordinary least squares linear regression model, Fitting a robust regression model using RANSAC, Evaluating the performance of linear regression models, Using regularized methods for regression, Turning a linear regression model into a curve - polynomial regression Dealing with nonlinear relationships using random forests, Working with Unlabeled Data - Clustering Analysis, Grouping objects by similarity using k-means, Organizing clusters as a hierarchical tree, Locating regions of high density via DBSCAN Multilayer Artificial Neural Network and Deep Learning: Modeling complex functions with artificial neural networks, Classifying handwritten digits, Training an artificial neural network, About the convergence in neural networks, A few last words about the neural network implementation, Parallelizing Neural Network Training with Tensor Flow, Tensor Flow and training performance
Who this course is for
Beginner Python developers curious about machine learning and mathematical modeling
Please, Log in or Register to view codes content!

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
No Password - Links are Interchangeable
K 0

KatzSec DevOps

Alpha and Omega
Jan 17, 2022
Reaction score
2 years of service
TOP salamat sa pag contribute. Next time always upload your files sa
Please, Log in or Register to view URLs content!
para siguradong di ma dedeadlink. Let's keep on sharing to keep our community running for good. This community is built for you and everyone to share freely. Let's invite more contributors para mabalik natin sigla ng Mobilarian at tuloy ang puyatan. :)
Top Bottom