Welcome to Mobilarian Forum - Official Symbianize forum.

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Introduction to Statistical Modelling and Inference

GravHosting
TOP 110

TOP

Alpha and Omega
Member
Access
Joined
Jan 21, 2021
Messages
410,990
Reaction score
20,108
Points
113
Age
38
Location
OneDDL
grants
₲641,288
4 years of service
89e8a481900f47000fda12bd38d0a925.jpeg

English | 2022 | ISBN: 978-1032105710 | 391 pages | True PDF | 19.38 MB
The complexity of large-scale data sets ("Big Data") has stimulated the development of advanced

computational methods for analysing them. There are two different kinds of methods to aid this. The
model-based method uses probability models and likelihood and Bayesian theory, while the model-free
method does not require a probability model, likelihood or Bayesian theory. These two approaches
are based on different philosophical principles of probability theory, espoused by the famous
statisticians Ronald Fisher and Jerzy Neyman.
Introduction to Statistical Modelling and Inference covers simple experimental and survey designs,
and probability models up to and including generalised linear (regression) models and some
extensions of these, including finite mixtures. A wide range of examples from different application
fields are also discussed and analysed. No special software is used, beyond that needed for maximum
likelihood analysis of generalised linear models. Students are expected to have a basic
mathematical background in algebra, coordinate geometry and calculus.
Features
• Probability models are developed from the shape of the sample empirical cumulative distribution
function (cdf) or a transformation of it.
• Bounds for the value of the population cumulative distribution function are obtained from the
Beta distribution at each point of the empirical cdf.
• Bayes's theorem is developed from the properties of the screening test for a rare condition.
• The multinomial distribution provides an always-true model for any randomly sampled data.
• The model-free bootstrap method for finding the precision of a sample estimate has a model-based
parallel - the Bayesian bootstrap - based on the always-true multinomial distribution.
• The Bayesian posterior distributions of model parameters can be obtained from the maximum
likelihood analysis of the model.
This book is aimed at students in a wide range of disciplines including Data Science. The book is
based on the model-based theory, used widely by scientists in many fields, and compares it, in less
detail, with the model-free theory, popular in computer science, machine learning and official
survey analysis. The development of the model-based theory is accelerated by recent developments
in Bayesian analysis.

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Links are Interchangeable - No Password - Single Extraction
 
K 0

KatzSec DevOps

Alpha and Omega
Philanthropist
Access
Joined
Jan 17, 2022
Messages
829,495
Reaction score
8,491
Points
83
grants
₲59,157
3 years of service
TOP salamat sa pag contribute. Next time always upload your files sa
Please, Log in or Register to view URLs content!
para siguradong di ma dedeadlink. Let's keep on sharing to keep our community running for good. This community is built for you and everyone to share freely. Let's invite more contributors para mabalik natin sigla ng Mobilarian at tuloy ang puyatan. :)
 
Top Bottom